
Computer Programming1 Academic Year 2018-2019

9

What is programming?

 Programming: is the process by which to determine how to deal with the data entered into

the computer for the desired results.

 Computer Programming: is the process of providing(زويد�) the commands to computer to

perform a specific task in a certain way .

§ Programming Language : it’s a sequence of instructions that convert An Algorithms (in

human language) to the A program (computer Language) .
§ Programming language can be classified into:

· Low Level Language : in this type of languages the programmer can write programs

must knowing the details of how the computer work, storage locations and details

of the device like machine code and Assembly language, the fallowing example of

adding the number (24 , 42) by these language .

·

·

·

·

·

· High Level Language: in this type of languages the programmer can write programs without the

knowing details of how the computer work, storage locations and details of the device , like

C++ , Java , …… , the fallowing example show part of program in C++ language .

Any Program in High Level language passing this stages

Program à interpreter/compiler à machine language

Input Data Processing Result (output)

(output)

Programming

void main(){

int x, y, z;

x = 1;

y = 12;

z = x + y ;}

Computer Programming1 Academic Year 2018-2019

10

No Compiler Interpreter

1 Compiler Takes Entire program as input Interpreter Takes Single instruction as input .

2 Intermediate Object Code is Generated No Intermediate Object Code is Generated

3 Conditional Control Statements are Executes faster Conditional Control Statements are Executes slower

Basic elements of C++

 C++ is a general-purpose programming language. C++ was derived from C, and is largely

based on it.

 General Form of a C++ Program

Programming language is a set of rules, symbols, special words

§ rules(syntax) – specifies legal instructions

§ Symbols - special symbols (+ - * ! …)

§ Special Word (reserved words) (int, float, double, char …)

§ A C++ program is a collection of one or more subprograms (functions)
§ Function

o Collection of statements

o Statements accomplish a task

§ Every C++ program must contain a function called main

Program structure in C++

int main ()
 {
 .
 .
 return 0;
 }

 void main()
 {
 .
 .
 .
 }

Function body

(Statements)

Computer Programming1 Academic Year 2018-2019

11

Where
§ The int specifies that it returns an integer value
§ The void specifies there will be no arguments

Example: Program in c++ to display "Welcome In Computer Programming Course"

#include <iostream.h>

Lines beginning with a hash sign (#) are directives for the preprocessor.
They are not regular code lines with expressions but indications for the

compiler's preprocessor. Preprocessor directives must be specified
in their own line and do not have to end with a semicolon (;).

In this case the directive #include <iostream.h> tells the preprocessor to
include input-output library in C++ .

int main() - void main()
Program execution begins with the main function. The entry point of

every C++ program is main().

Curly brackets { }

 indicate the beginning and end of a function, which can also be called
the function's body. The information inside the brackets indicates
what the function does when executed.

;

In C++, the semicolon is used to terminate a statement. Each statement
must end with a semicolon. It indicates the end of one logical
expression.

Cout

Statements

You can have multiple statements on a single line, as long as you
remember to end each statement with a semicolon. failing to do so will
result in an error.

return 0 ;

Note: The program has been structured in different lines in order to be more readable, but in
C++, we do not have strict rules on how to separate instructions in different lines.

Program Result :
Welcome In Computer Programming Course

#include <iostream.h>
 int main()
 {

Welcome In Computer cout <<"
"; Programming Course

 return 0;
 }

#include <iostream.h>
 void main()
 {

Welcome In Computer cout <<"
"; Programming Course

 }

Computer Programming1 Academic Year 2018-2019

12

Exercise: Write a program in C++ to display :

 Welcome In IS Dep.

I'm a C++ course

First Stage

Group A

Comments

 Comments are explanatory statements(لي��ت �وضيحية��) that you can include in the C++ code to
explain what the code is doing. The compiler ignores everything that appears in the comment, so
none of that information shows in the result. There are two types of comment:

Comment type Description Example

Single-line comment
// line comment

#include <iostream.h>

int main()
{
// print "Welcome In IS Dep. ".
 cout << "Welcome In IS Dep. ";
 return 0;
}

Multi-Line Comments

/* block comment */

include <iostream.h>

int main()
{
 /* Welcome In IS Dep */

 /* Example for display
 Welcome In IS Dep
 */

 cout << "Welcome In IS Dep. ";
 return 0;
}

Note: Comments can be written anywhere, and can be repeated any number of times throughout

the code. Within a comment marked with /* and */, // characters have no special meaning, and

vice versa. This allows you to "nest" one comment type within the other.

 Reserved Words (keywords)
Reserved words have a predefined meaning in C++ and that you cannot use as names for variables or
anything else.

Computer Programming1 Academic Year 2018-2019

13

Note: Keep in mind that the case of the keywords is significant. C++ is a case-sensitive language, and it

requires that all keywords be in lowercase. For example, RETURN will not be recognized as the keyword
 return.

 Identifiers
 Any item might define in a program is called an identifier.

Rules for identifiers

 must begin with letter or the underscore _

 followed by any combination of numerals, letters or underscore

 recommend (وص��) meaningful identifiers

 Another rule that you have to consider when inventing your own identifiers is that they cannot

match any keyword of the C++ language nor your compiler's specific ones, which are reserved

keywords (keyword).

Here are some correct and incorrect identifier names:

Correct Incorrect explain way incorrect

Count 1count ?

test23 hi!there ?

high_balance high...balance ?

_name _n ame ?

 Note: The C++ language is a "case sensitive" language. That means that an identifier written in
capital letters is not equivalent to another one with the same name but written in small letters. Thus,
for example, the RESULT variable is not the same as the result variable or the Result variable.

Use Meaningful Names
 Variable names and other names in a program should at least hint at the meaning or use of the
thing they are naming. It is much easier to understand a program if the variables have meaningful
names. Contrast the following: x = y * z;
With the more suggestive: distance = speed * time;

 The two statements accomplish the same thing, but the second is easier to understand.

Data Types

§ When programming, we store the variables in our computer's memory, but the computer has
to know what kind of data we want to store in them, since it is not going to occupy the same
amount of memory to store a simple number than to store a single letter or a large number,
and they are not going to be interpreted the same way.

§ The memory in our computers is organized in bytes. A byte is the minimum amount of memory
that we can manage in C++.

§ In addition, the computer can manipulate more complex data types that come from grouping
several bytes, such as long numbers or non-integer numbers. In the following figure and table
shown summary of the basic fundamental data types in C++, as well as the range of values that
can be represented with each one:

Computer Programming1 Academic Year 2018-2019

14

Variables
§ Programs manipulate data such as numbers and letters. C++ and most other programming

languages use programming constructs known as variables to name and store data.

§ Creating a variable reserves a memory location, or a space in memory for storing values.
The compiler requires that you provide a data type for each variable you declare.

§ Variables like small blackboards , can be written and then can be changed.

§ The number or other type of data held in a variable is called its value .

§ All integer, floating-point, and other values used in a program are stored in and retrieved
from the computer’s memory. Conceptually, locations in memory are arranged like the

Computer Programming1 Academic Year 2018-2019

15

rooms in a large hotel, and each memory location has a unique address, like room numbers
in a hotel .

Variable Declarations

 All variables must be declared before they are used. The syntax for variable declarations is as

follows:

Syntax Type_name variable_name1 , variable_name2, ……… ;

Example int count , number_of_students ;

 double distance ;
Where:
type_name : must be a valid data type
 Variable_Name_1, Variable_Name_2, . . . ; or (variable_list) : may consist of one or more Identifier
names separated by commas (,). Each Variable name must follow the rules of identifier name.

Example for variable declaration using some of data type
Integer declaration :
 int x ;
 long int y ;

short int z;

Floating Point Numbers declaration:
float x1 ;
double y1;
long double z1;

Character declaration :
 char ch ;

Boolean declaration :
bool b1 ;// true or flase

 Exercise:

Example : To see what variable declarations look like in action within a program, we are going to see
the C++ code of the example about your mental memory :

valid variable declaration Not valid Explain way not
valid ?

int a, b, c; int a; b,c ; ?
int a;
int b;
int c;

int a;
int b ,
 int c;

?

Computer Programming1 Academic Year 2018-2019

16

// operating with variables
#include <iostream.h>
int main ()
{
 // declaring variables:
 int a, b;
 int result;
 // process:
 a = 5; b = 2;
 a = a + 1;
 result = a - b;
 // print out the result:
 cout << result;
 // terminate the program:
 return 0;
}

Explain the execution steps of the program :

 Scope of variables
 A variable can be either of

 Global : A global variable is a variable declared in the main body of the source code, outside all ط
functions.

 .Local: while a local variable is one declared within the body of a function or a block ط

Note: The scope of local variables is limited to the block enclosed in braces ({}) where they are
declared. This means that if another function existed in addition to main, the local variables declared
in main could not be accessed from the other function and vice versa.

Initialization of variables
When declaring local variable, its value is by default undetermined. But you may want a variable to

store a value at the same moment that it is declared. In order to do that, you can initialize the variable.
 The syntax for initialization variables is as follows:

type identifier = intial_value;

vaild examples
 int a= 5 ;
 int a=b=c= 0 ;
 int a=5 , d, f=8;

 Not valid examples
int a=5 ; b= 5;
int a= b=0, int c= 0;
 int a=5 , d; f=8;

Way ???

#include <iostream.h>
 int a, b;
 int main ()
 {
 int result;
 a = 5; b = 2;
 a = a + 1;
 result = a - b;
 // print out the result:
 cout << result;
 // terminate the program:
 return 0; }

Global variables

 Local variable

Computer Programming1 Academic Year 2018-2019

17

// initialization of variables
#include <iostream.h>
int main ()
{
 int a=5; // initial value = 5
 int b=2; // initial value = 2
 int result; // initial value
 a = a + 3; result = a - b;
 cout << result;
 return 0;
}

 Result:???

Constants
 Constants refer to fixed values that the program cannot alter. Constants can be of any of the basic
data types. The way each constant is represented depends upon its type. Constants are also called literals.

Type examples

Integer Numerals
1776
707
-273

Floating-Point Numerals

3.14159
6.02e23 // 6.02 x 10^23
1.6e-19 // 1.6 x 10^-19
3.0

Characters
'z'
'p'

Strings
"Hello world"
"How do you do?"

Bool There are only two valid Boolean values: true and false.

Declared constants (const)
 With the const prefix you can declare constants with a specific type in the same way as you would do
with a variable except that their values cannot be modified after their definition :

const int pathwidth = 100;
const float pi=3.14 ;

Defined constants (#define)

You can define your own names for constants that you use by using the #define Preprocessor directive.
Its Format is:

define identifer value

Computer Programming1 Academic Year 2018-2019

18

Example :

// defined constants: calculate circumference

#include <iostream.h>

#define PI 3.14159
#define NEWLINE '\n'

int main ()
{
 double r=5.0; // radius
 double circle;

 circle = 2 * PI * r;
 cout << circle;
 cout << NEWLINE;

 return 0;
}

 result :

 31.4159

Operators

 Once we know of the existence of variables and constants, we can begin to operate with them. For that
purpose, C++ integrates operators.

Assignment (=) : The assignment operator (assignment statement) assigns a value to a variable.

Its general syntax as follow :

§ The lvalue has to be a variable whereas the rvalue can be either a constant, a variable, the
result of an operation or any combination of these (expression) .

§ The most important rule when assigning is the right-to-left rule: The assignment operation

always takes place from right to left, and never the other way.

§ Arithmetic expression is any combination of simple value, function call, binary expression, and
unary expression.

 Where :

· Simple value : constant number , string constant , character constant , identifier.

· Unary operator (ا�عوامل ا�ح�دية) are (+, - ,-- , ++).

Lvalue Rvalue

Computer Programming1 Academic Year 2018-2019

19

Example1 (arithmetic expression)

1. double a= 10 + y / 5 – m1;

2. double a= (x + 2) / y * 5 * 9;

3. int a= y*10+(2-1);

4. int z ; z= sin(45) * 34 ;

5. float m*= m + x ++ ;

 Example2

// assignment operator

#include <iostream.h>
int main ()
 {
 int a, b;
 a = 10;
 b = 4;
 a = b;
 b = 7;

 cout << "a:";
 cout << a;
 cout << " b:";
 cout << b;
 return 0;
}

Result: ? ?

 the assignment operation can be used as the rvalue (or part of an rvalue) for another assignment
operation. For example: a = 2 + (b = 5); is equivalent to:

 b = 5;
 a = 2 + b;

 The following expression is also valid in C++: a = b = c = 5; It assigns 5 to the all the three
variables: a, b and c.

Arithmetic operators (+, -, *, /, %)
The five arithmetical operations supported by the C++ language are:

+ Addition

- Subtraction

* Multiplication

/ Division

%
Modulo
(remainder of an integer division)

§ Arithmetic Operators require two variables to be evaluated.
§ Modulo is the operation that gives the remainder of a division of two values.
§ For example, if we write: a = 11 % 3; // a=2

Computer Programming1 Academic Year 2018-2019

20

 Compound assignment (+=, -=, *=, /=, %=)
 When we want to modify the value of a variable by performing an operation on the value currently
stored in that variable we can use compound assignment operators:

Expression Is equivalent to

 x += y ; x = x + y;

a-= 5; a = a - 5 ;

price *=units + 1 ; price =price * (units + 1) ;

a /= b; a = a / b;

c %= 2; C = c % 2;

 Example :
#include <iostream.h>
int main ()
{
 int a, b=3;
 a = b;
 a+=2;
 cout << a;
 return 0;
 }

Result: ??

Increase and decrease (++, --)

 Shortening even more some expressions, the increase operator (++) and the decrease operator (--)
increase or reduce by one the value stored in a variable (its unary operation) . They are equivalent to +=1
and to -=1, respectively. Thus:

c++;
c+=1;
c=c+1;

c--;
c-=1;
c=c-1;

 Note:
§ A characteristic of this operator is that it can be used both as a prefix and as a suffix. That means

that it can be written either before the variable identifier (++a) or after it (a++).

§ Although in simple expressions like a++ or ++a both have exactly the same meaning, in other
expressions in which the result of the increase or decrease operation is evaluated as a value in an
outer expression they may have an important difference in their meaning:
 In the case that the increase operator is used as a prefix (++a) the value is increased before ط

the result of the expression is evaluated and therefore the increased value is considered in the
outer expression.

 in case that it is used as a suffix (a++) the value stored in a is increased after being evaluated ط
and therefore the value stored before the increase operation is evaluated in the outer
expression. Notice the difference:

Are all equivalent Are all equivalent

Computer Programming1 Academic Year 2018-2019

21

Note::

 In Example 1, B is increased before its value is copied to A.
 In Example 2, the value of B is copied to A and then B is increased.

 Other Examples

Automatic type conversion

If an expression contains operands of different types, an (to the type which is highest in the
following hierarchy) is performed. Automatic type conversion

Some of binary operation yield implicit type conversions

Relational and equality operators (==, !=, >, <, >=, <=)

 In the term relational operator, relational refers to the relationships that values can have with one
another. In the term logical operator, logical refers to the ways these relationships can be connected. We
can use the relational and equality operators. The result of a relational operation is a Boolean value that
can only be true or false, according to its Boolean result.

Note: C++ fully supports the zero/non-zero concept of true and false.

Computer Programming1 Academic Year 2018-2019

22

However, it also defines the bool data type and the Boolean constants true and false.

Here there are some examples:

Of course, instead of using only numeric constants, we can use any
valid expression, including variables. Suppose that a=2, b=3 and
c=6,

(7 == 5) // evaluates to false.

(5 > 4) // evaluates to true.

(3 != 2) // evaluates to true.

(6 >= 6) // evaluates to true.

(5 < 5) // evaluates to false.

(a == 5) // evaluates to false since a is not equal to 5.

(a*b >= c) // evaluates to true since (2*3 >= 6) is true.

(b+4 > a*c) // evaluates to false since (3+4 > 2*6) is false.

((b=2) == a) // evaluates to true.

Logical operators (! , && , ||)

The Operator ! : is the C++ operator to perform the Boolean operation NOT, it has only one operand,
located at its right, and the only thing that it does is to inverse the value of it, producing false if its operand
is true and true if its operand is false. Basically, it returns the opposite Boolean value of evaluating its
operand.

Example

!(5 == 5) // evaluates to false because the expression at its right (5 == 5) is true.
!(6 <= 4) // evaluates to true because (6 <= 4) would be false.
!true // evaluates to false
!false // evaluates to true.

The logical operators && and || : are used when evaluating two expressions to obtain a single relational
result. The operator && corresponds with Boolean logical operation AND. This operation results true if
both its two operands are true, and false otherwise.

Computer Programming1 Academic Year 2018-2019

23

The operator ||: corresponds with Boolean logical operation OR. This operation results true if either one
of its two operands is true, thus being false only when both operands are false themselves.

 Example:

((5 == 5) && (3 > 6)) // evaluates to false (true && false).

((5 == 5) || (3 > 6)) // evaluates to true (true || false).

Conditional operator (?)

 The conditional operator evaluates an expression returning a value if that expression is true and a
different one if the expression is evaluated as false.
Conditional operator which can be used to replace if...else statement.
Its format is:

condition? result1 : result2

If condition is true the expression will return result1, if it is not it will return result2.

Example:

(7==5)? 4 : 3 // returns 3, since 7 is not equal to 5.

7==5+2 ? 4 : 3 // returns 4, since 7 is equal to 5+2.

5>3 ? a : b // returns the value of a, since 5 is greater than 3.

a>b ? a : b // returns whichever is greater, a or b.

// conditional operator

#include <iostream>

int main ()
 {
 int a,b;

 a=10;
 b= (a == 1) ? 20: 30;

 cout << b;
 return 0;

 }

Result ?

Computer Programming1 Academic Year 2018-2019

24

Precedence of operators

 When writing complex expressions with several operands, we may have some doubts about which
operand is evaluated first and which later. For example, in this expression:

a = 5 + 7 % 2

We may doubt (شك) if it really means:

a = 5 + (7 % 2) // with a result of 6, or
 a = (5 + 7) % 2 // with a result of 0

The correct answer is the first of the two expressions, with a result of 6. There is an established order with
the priority of each operator, and not only the arithmetic ones (those whose preference come from
mathematics) but for all the operators which can appear in C++. From greatest to lowest priority, the
priority order is as follows:

 All these precedence levels for operators can be manipulated or become more legible by removing
possible ambiguities using parentheses signs (and), as in this example:

a = 5 + 7 % 2; can be written either as a = 5 + (7 % 2); or a = (5 + 7) % 2;

Examples

1. x = 3 + 4 + 5;
2. z *= ++y + 5;
3. a || b && c || d;

Computer Programming1 Academic Year 2018-2019

25

Input and output

The standard C++ library includes the header file iostream, where the standard input and output
stream objects are declared

Standard Output (cout)
 By default, the standard output of a program is the screen, and the C++ stream object

defined to access it is cout.
 cout is used in conjunction with the insertion operator, which is written as << (two "less

than" signs).
Examples

1. cout << "Output sentence";

2. cout << 120;

3. cout << x;

4. cout << "Hello";
5. cout << Hello;

6. cout << "Hello, " << "I am " << "a C++ statement";
7. cout << "Hello, I am " << age << " years old and my department is " << dep;
8. cout << "This is a sentence.";

cout << "This is another sentence.";

Note: In order to perform a line break on the output we must explicitly insert a new-line character into
cout . In C++ a new-line character can be specified as \n (backslash, n) it’s also called escape codes.
Additionally, to add a new-line, you may also use the endl manipulator.

Example1:

cout << "First sentence.\n ";

cout << "Second sentence.\nThird sentence.";

This produces the following output:
 First sentence.
 Second sentence.
 Third sentence.

Example2:

cout << "First sentence." << endl;

cout << "Second sentence." << endl;

Would print out:
 First sentence.
 Second sentence.

Computer Programming1 Academic Year 2018-2019

26

Here you have a list of some of such escape codes:

Example 3:

cout << "The total is\t "<< sum << endl
Would print out , if assume sum value is 100
 The total is 100

Standard Input (cin)
 The standard input device is usually the keyboard. Handling the standard input in C++ is done by

applying the overloaded operator of extraction (>>) on the cin stream.

 The operator must be followed by the variable that will store the data that is going to be extracted
from the stream. For example:

Example:
int age;

cin >> age;

 cin can only process the input from the keyboard once the RETURN key has been pressed.

 Therefore, even if you request a single character, the extraction from cin will not process the input
until the user presses RETURN after the character has been introduced.

 You can also use cin to request more than one data input from the user:
cin >> a >> b;

 is equivalent to:
cin >> a;
cin >> b;

Note: In both cases the user must give two data, one for variable a and another one for variable b that may
be separated by any valid blank separator: a space, a tab character or a newline.

// Example 1
#include <iostream.h>
 int i;
int main ()
{
 cout << "Please enter an integer value: ";
 cin >> i;
 cout << "\n The value you entered is " << i;

// Example 2
#include <iostream.h>
 // this program read two variable then swap their values
 int x,y,z ;
 void main()
 {
 cout<<”Enter x,y :”;
 cin >> x>>y ;

Computer Programming1 Academic Year 2018-2019

27

 cout << " and its double is " << i*2 << ".\n";
 return 0;
}

 cout<<”before swap:”;
 cout<<”x=”<<x<<endl;
 cout<<”y=”<<y<<endl;
 z=x; x=y; y=z;
 cout<<”After swap:”;
 cout<<”x=”<<x<<endl;
 cout<<”y=”<<y<<endl;
 }

// Example 3
#include <iostream.h>
 /* this program read two number and find the result
of application the binary operation (+,-,&,/,%) */
 int x,y ;
void main()
 {
 cout<<”Enter x,y :”;
 cin >> x>>y ;
 cout<<”x+y=”<<x+y;
 cout<<”x-y=”<<x-y;
 cout<<”x*y=”<<x*y;
 cout<<”x/y=”<<x/y;
 cout<<”x%y=”<<x%y;
}

// Example 4
#include <iostream.h>
 // this program find the product table for any input number
 int x;
 void main ()
 {
 cout <<"Enter x="; cin>>x ;
 cout << " x * 1 ="<<x*1 <<endl;
 cout << " x * 2 ="<<x*2 <<endl;
 cout << " x * 3 ="<<x*3 <<endl;
 cout << " x * 4 ="<<x*4 <<endl;
 cout << " x * 5 ="<<x*5 <<endl;
 cout << " x * 6 ="<<x*6 <<endl;
 cout << " x * 7 ="<<x*7 <<endl;
 cout << " x * 8 ="<<x*8 <<endl;
 cout << " x * 9 ="<<x*9 <<endl;
 cout << " x * 10 ="<<x*10 <<endl;
 cout << " x * 11="<<x*11 <<endl;
 cout << " x * 12="<<x*12 <<endl;
}

Questions in Sequence

1.Write a program that outputs the following text on screen:
what a happy day!
Oh what
a happy day!
Oh yes,

2. prints each of the following C++ statements is performed? Assume x = 2 and y = 3

Computer Programming1 Academic Year 2018-2019

28

3.The following program contains several errors:
#include <stream>
 int main
 {
 cout<< "If this text",
 cout>> " appears on your display, ";
 cout<< " endl;"
 cout<< 'you can pat yourself on '<< " the back!" <<endl.
 return 0;
)
Resolve the errors and run the program to test your changes.

4.Write a program to calculate and print the product of three integers.

5. Write a program that asks the user to enter two numbers and prints the sum, product and difference
of the two numbers.

6. Write a program that reads in the radius of a circle as an integer and prints the circle's diameter,
circumference and area. Use the constant value 3.14159 for pi.

7. Write a program that inputs a five-digit integer, separates the integer into its individual digits and
prints the digits.
For example, if the user types in 42339, the program should print:4 2 3 3 9

8. Write a program that converts Celsius to Fahrenheit according to the following equation:
F = 9/5 C+32

9.Write a program to print out the perimeter of a rectangle given its height and
width.
Hint: perimeter = 2 (width+height)

10.Write a program that converts kilometers per hour to miles per hour.
Hint: miles = (kilometers=0.6213712)

11.Write a program that takes hours and minutes as input and outputs the total
number of minutes (1 hour 30 minutes = 90 minutes).

12.Write a program that takes an integer as the number of minutes and outputs the
total hours and minutes (90 minutes = 1 hour 30 minutes).

13. Write a program to find the value of X:

 X=2y+5z where y= r^2+7

